

Modelling atmospheric fate of TiO2 and its impact on atmospheric chemistry

<u>Astrid Manders</u>, Christof Asbach, Ali Mohamadi Nasrabadi, Jean-Marc Lacome, Bruno Debray, Jeroen Kuenen

Nanofase project

- Nanomaterial may behave differently from conventional material, environmental risks
- Describe environmental fate of engineered nanomaterial (ENM)
- Concentrations resolved in space and time, for air, water and soil
- Consistency with screening-level model (SB4N)

Nanofase project

Focus on metal oxides (TiO₂, CeO₂) for air

Challenges

- Emissions poorly known
- Particle properties of emitted material poorly known
- Potential impact on atmospheric chemistry, what are reaction rates?

Solutions

- Emissions poorly known
- First spatially resolved emission inventory
- Particle properties of emitted material poorly known
- Field campaigns+ approximations
- Potential impact on atmospheric chemistry, what are reaction rates?
- Laboratory study

CTM used to assess overall concentrations and deposition

Emissions

Spatially resolved emissions of TiO₂ to air, water determined for 5 classes:

- Pristine
- Transformed
- Matrix-embedded
- Product-embedded
- Dissolved

Adam, V., Caballero-Guzman, A., & Nowack, B. (2018). *Environmental pollution*, 243, 17-27.

+ manuscript in preparation on spatial and temporal distribution

Particle Properties

- No free nanoparticles released to air under normal conditions, only at accidental release->near field modelling needed
- Particles can be treated as conventional particles on regional scale
- Density & shape based on field experiments+ other considerations
- TiO2 can act as a catalyst for NO2-reactions, but only at very high concentrations effects are found

٥	LOTOS-EUROS size class (µm)	Density of particles (kg/m3)
Pristine	0.33	2000
Transformed	0.33	1500
Matrix-embedded	8.0	1800

Modelling

- LOTOS-EUROS model
- 1/2x1/4° for European continent
- 1/8x1/16° for UK Thames Catchment
- Year 2015
- Emission timing like industrial processes for emissions to air
- Passive tracers, sensitivity studies
- Chemically active tracer, sensitivity study with unrealistically high concentrations

Annual mean concentration and deposition

Annual average concentration TiO2 np (ng/m³)

0.005

dry deposition

Annual total dry deposition TiO2 np ($\mu g/m^2$)

wet deposition

0.1 0.2 0.5 1.0 2.0 5.0 10.0 50.0 100.0 Annual total wet deposition TiO2 np (μg/m²)

Annual mean concentration and deposition

 Impact of particle size and density mainly for larger particles, up to factor 2 difference

Impact of reducing particle size from 8 to 3 μm , increasing concentrations and transport distance

Chemical reactions

- NO2 \rightarrow NO+O, TiO2 acts as catalyst
- Experiments in flow chamber with P25
- Effects only at very large concentrations

Modelling experiment

- Emission experiment July 2015
- Fictitious emissions 10⁸ (!) kg/hour TiO2_np at INERIS location
- NO2→NO+O and complete removal of NO2 tested

Impact of chemistry

Monthly mean concentration and concentration difference, complete removal case

EGU-Vienna 9-4-2019

Impact of chemistry

Monthly mean concentration and concentration difference,NO2 \rightarrow NO+O

EGU-Vienna 9-4-2019

Conclusions and outlook

- First estimation of ambient concentrations and deposition of TiO₂
- Under ambient conditions, they occur as larger aggregates or embedded in matrix
- Concentrations are low, cf. EU limit values for BaP, heavy metals 1-5 ng/m³
- Natural contribution TiO₂ in crustal material 10-20 ng/m³
- Impact on atmospheric chemistry can be neglected at current concentration values
- Results will be used by soil/water model and SB4Nano

- Thank you for your attention
- Thank all the NanoFASE people, in particular
 - Jean-Marc Lacome
 - Christof Asbach, Ali Mohamadi Nasrabadi
 - Jeroen Kuenen
- Time for questions?
- www.nanofase.eu

