

Dissolution and retention of nanoparticles in soils

Geert Cornelis University of Gothenburg, Dept. Chemistry and Molecular Biology

GUIDE

NANOFASE

Geert.Cornelis@chem.gu.se

www.gu.se

Dissolution

- Intro
- Methods
 - Ultrafiltration
 - (Ultra)centrifugation
 - Dialysis
 - spICP-MS
- Parameters affecting AgNP dissolution
- Dissolution

Dissolution: relevance

- Toxic mode of action often through ion, not NP (e.g. Ag)
- Fate of ions is vastly different from NP
- Risk assessment tools for metals are well developed for dissolved ions, much less so for NP

Dissolution vs. solubility

Dissolution

What is the "dissolved" phase

- Ionic
- Molecular
- < 0.45 um
- "not centrifugeable"
- < 1 nm</pre>
- < 1 kDa</pre>

Dissolution: methods

Available techniques

- Ultrafiltration
- Ultra-centrifugation
- Dialysis bags
- spICP-MS

Ultrafiltration

- Size cut-off expressed in "Daltons": Molecular wieght cut-off (MWCO)
 - ➔ Molecular weight of a PEG molecule that is retained for at least 90 %
 - Always a distribution of sizes that is filtered

Separation of ENP: filtration

Dissolution of Ag NP

Ag+ + SRFA → Ag-SRFA

Separation of ENP: filtration

Cornelis et al., 2010

Down:

centrifugal force

Up:

- Drag (viscous)
- Buoyant force

• Bubyant lotes • Terminal velocity $V = \frac{2}{9} \frac{(\rho_p - \rho_f)}{\mu} g R^2$

$$\frac{\partial c}{\partial t} = D\left[\left(\frac{\partial^2 c}{\partial r^2}\right) + \frac{1}{r}\left(\frac{\partial c}{\partial r}\right)\right] - s\omega^2\left[r\left(\frac{\partial c}{\partial r}\right) + 2c\right]$$

Swing bucket centrifuge

Centrifugation

- Silver nanoparticles evenly distributed from 1 to 1000 nm in a 12 cm vial.
- Sampling at 4 cm depth
- Different spinning speeds
- →No sharp cut-off
- High speeds required for NP/dissolved separation

Separation of ENP: centrifugation

Separation of ENP Centrifugation vs. filtration

Congestion

Natural particles in filtrates vs. centrifuged supernatants analysed with cFFF (Gimbert et al., 2006):

Better recovery with centrifugation but filtration is more convenient and does not require prior knowledge of density

Filtration vs. dialysis

Franklin et al. 2007. ES&T

Start Dialysis (high concentration gradient)

End Dialysis (equilibrium)

Delay in measurement because of equilibration

Detector signal (cps)

spICP-MS vs. Conventional ICP-MS: effect of dwell time

Single particle ICP-MS

- η_e
- **Dissolved** calibration curve

spICP-MS: Signal discrimination

Dissolved and nanoparticle signal can be distiguished.

Monitor dissolution using spICP-MS

10⁶ dilution of AgNP (40 nm) in an ecotoxicological medium

Figure 1. Dissolution of 100nm TA capped Ag ENP at 50 ng/L over time, as evidenced by the decrease pulse intensity over time. Raw pulse intensity is proportional to particle mass (x-axis) and so smaller pulses indicate less Ag associated with each particle. The number of particles observed (y-axis) is similar for each analysis.

Mitrano et al. (2014) Environ. Sci. Nano.

Total dissolved [M]

- AgNP_{dissolved}=[Ag]_{UF}- [Ag]_{UF} +[Ag]_{adsorbed}
- $K_d = [Ag]_{adsorbed}/[Ag]_{1kDa}x L/S$

$$\left(\frac{K_d S}{L} + 1\right) \left([Ag]_{UF} - [Ag]_{geogenic} \right) = AgNP_{dissolved}$$

Retention

- Intro
- Descriptors for retention
 - $K_{\rm d}$
 - -α
 - $-K_{\rm r}$
- How to predict bio-availability

Retention

The interaction of NP with surfaces affecting their

- Release
- Attachment
- Transport
- Bio-availability

Descriptors for retention

Discussion in ESNano

- Praetorius et al. 2014. "The road to nowhere: Equilibrium partition coefficients for nanoparticles" *ESNano 1,317-322.*
- Cornelis et al. 2015: "Fate descriptors for engineered nanoparticles: the good, the bad, the ugly" *ESNAno 2, 19-26.*
- Dale et al. 2015. "Much ado about alpha: reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling" *ESNano 2, 27-32.*

$K_{\rm d}$ values

- OECD guideline 121
- Operationally defined
- Assume equilibrium
- Use:
 - Model bioavailability (e.g. incombination with speciation modelling, decomposition rates).
 - Transport modelling

 $K_{d} = [A]_{solid}/[A]_{aqueous}$

$K_{\rm d}$ values for nanoparticles?

$K_{\rm d}$ values for nanoparticles?

 $V_{attach} = k_{attach}^* [NP]_{aqueous}$

$$V_{detach} = k_{detach}^* [NP]_{solid}$$

$$K_d \sim k_{\text{attach}} / k_{\text{detach}}$$
?

α values

- Ratio of attachment rate at real vs. Ideal conditions
- The probability that a particle will "stick" to other particles or surfaces

α values

- Can be predicted based on DLVO theory (requires hamaker constant and surface potential)
- Sometimes obtained from QCMD experiments
- Most often fitted to breakthrough curves from columns Assumes clean bed filtration, i.e. only irreversible attachment

$$\alpha_{att} = \frac{2d_{50}}{3(1-\theta)\eta_0 L} \ln(C/C_0)$$

Determining attachment rates via batch tests

$$ln(\gamma(t)C_B + 1) = \alpha\beta(n, B) \times Bt$$

• $\gamma(t)$ time-dependent distribution coefficient

$$\gamma(t) = \frac{\frac{n_0 - n(t)}{C_B}}{n}$$

- α : attachment efficieny
- β(n,B): second-order attachment rates
- B: number concentration of background particles

Barton et al. 2014, Environ. Eng. Sci. 31 421-427.

 $K_{\rm r}$ values

Intense shear conditions during shaking \Leftrightarrow column experiment

→ Different parameter (α_{ortho}) than in a column experiment (α_{att}), but possibly related

 α_{ortho} calculated from K_r values vs. α_{att} (Cornelis , ES Nano)

36

 α_{att}

Cornelis et al, SSSAJ **2012**, 76, 891-902.

AgNP in 0.45 μ m filtrate

Cornelis, G. et. al. *ES&T.* **2011,** *45* (7), 2777-2782.

$K_{\rm r}$ values: screening tool, comparison

2011, *4*5 (7), 2777-2782.

Relation with bioavailability

EC50 of AgNP (NM300K) in different soils (Schlich et al., 2015 Env. Poll. 195, 321-330.)

Bioavailability

Effective dose ?

Biotic Ligand model

Complete physico-chemical analysis of medium or natural water

Water body	Ксу	рН	Cu (µg/L)	DOC (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	SO ₄ (mg/L)	Cl (mg/L)	Alkalinity mg/L as CaCO ₃	Hardness mg/L as CaCO ₃	Cu, 21-d EC50 (µg/L)	Cu, 21-d LC50 (µg/L)
Choapa River	2	8.36	1.0	0.8	34.0	9.0	13.1	1.1	59.5	10.2	98	141	15.6	16.6
Petorca River	3	8.59	0.6	0.7	45.1	21.2	20.6	0.9	81.0	27.9	235	222	32.6	35.2
Pocuro River	4	8.26	4.4	1.0	34.2	5.8	9.9	1.4	64.5	9.6	84	145	18.3	18.2
Putaendo Brook	5	8.51	3.8	0.8	21.2	4.2	6.9	0.5	34.3	2.5	59	87	13.0	13.9
Yeso River	6	8.53	1.3	0.6	81.4	14.1	25.7	1.9	313.0	43.6	83	262	8.1	26.7
Maipo River	7	8.58	2.6	0.4	142.2	20.4	109.2	3.0	248.5	275.2	89	440	15.3	19.7
Teno River	8	7.89	0.0	0.3	26.5	2.3	10.2	1.2	48.1	12.5	29	92	7.4	8.2
Mataquito River	9	8.02	0.0	1.3	22.7	9.0	11.8	2.1	45.0	11.9	43	88	15.7	14.9
Maule River	10	8.00	0.2	1.0	9.0	2.2	6.6	0.8	13.0	5.3	26	34	9.8	9.6
Putagan River	11	7.76	0.1	0.8	4.5	0.7	1.6	0.2	4.4	0.2	17	16	9.5	7.7
Longavi River	12	7.99	0.5	0.5	5.4	1.2	2.9	0.4	7.6	1.3	20	21	12.5	11.2
Nuble River	13	7.90	0.7	1.1	2.7	0.9	2.4	0.6	1.2	1.3	15	11	10.2	9.3
Chillan River	14	7.99	0.8	1.1	2.8	1.2	2.4	0.8	3.1	1.2	19	12	8.8	8.8
Itata River	15	7.97	1.3	1.8	3.5	1.0	2.8	1.1	2.2	1.1	25	20	12.9	13.6
Laja River	16	7.99	1.0	1.2	3.9	1.0	2.0	0.5	2.5	0.7	18	14	9.6	9.3
Bio-Bio River	17	8.00	0.5	0.6	7.0	2.0	4.5	0.7	6.0	5.0	28	29	9.1	9.3
Malleco River	18	7.97	0.2	0.7	3.2	1.0	2.2	0.4	1.5	1.1	21	12	7.4	7.1
Indio River	19	8.35	0.0	0.2	15.2	7.8	40.0	1.9	20.1	56.0	68	70	12.1	12.1
Cautin River	20	8.18	0.1	0.5	82	3.0	67	14	53	2.1	45	33	13.4	13.5

Cu, 21-d EC50 = Copper 21-d half-maximal effective concentration values of chronic reproduction test with D. magna; Cu, 21-d LC50 = Copper 21-d half-maximal lethal concentration values of chronic test with D. magna; DOC = dissolved organic carbon.

Table 6. Summary of the parameter values for the Hydroqual (Hq) biotic ligand model (BLM), version 2.2.3, and De Schamphelaere et al. (2004) c-CuBLM-3 (DSch) [15,28]

Parameter/condition	Value Hq	Value DSch
$Log K of gill-Cu^{2+}$	7.4	8.02
$Log K of gill-CuOH^+$	$6.2 (-1.3)^{a}$	$8.02 (0.52)^{a}$
$Log K of gill-CuCO_3$	_	7.44
$Log K of gill-Ca^{2+}$	3.6	_
$Log K of gill-Mg^{2+}$	3.6	_
Log K of gill- H^+	5.4	6.67
$Log K of gill-Na^+$	3.0	2.91
% Humic acids	0.01	4.17 ^b 24.1 ^c 11.7 ^d
$Log K of CuOH^+$	6.48	6.48
$Log K of Cu(OH)_2$	11.78	11.81
$Log K of CuHCO_3^+$	14.62	12.13
$Log K of CuCO_3$	6.75	6.77
$\operatorname{Log} K$ of $\operatorname{Cu}(\operatorname{CO}_3)_2^{2-}$	9.92	10.2
$Log K of CuCl^+$	0.4	0.2
$Log K$ of $CuSO_4$	2.36	2.36

Better prediction of toxicity

Thermodynamic database including ligand binding.

a nano Biotic Ligand model?

Modelled bioavailability

Modelled AgNP concentration afo time in a plow layer

Conclusions

- Dissolution
 - Is operationally defined
 - Beware of artefacts: check recovery!
 - Recalculation for dissolution in soils
- Retention
 - Different descriptors available: take your pick!
 - Kinetic ones are conceptually more accurate
 - Relation with bio-availability is not yet established

Acknowledgments

The Nordic Council of Ministers

Contact: geert.cornelis@chem.gu.se